Growth and Singularity in 2D Fluids

Andrej Zlatoš

Department of Mathematics, UCSD

Dynamics of Small Scales in Fluids ICERM, February 14, 2017

Joint with A. Kiselev, L. Ryzhik, Y. Yao

Euler equations in 2D

The (incompressible) Euler equations are

$$egin{aligned} u_t + (u \cdot
abla) u +
abla p = 0 \
abla \cdot u = 0 \end{aligned}$$

on $D \times (0, T)$ for some domain $D \subseteq \mathbb{R}^d$ and time $T \leq \infty$, with

 $u \cdot n = 0$

on $\partial D \times (0, T)$ (no-flow boundary condition) and given $u(\cdot, 0)$. In 2D, their vorticity form is the active scalar equation

 $\omega_t + \mathbf{u} \cdot \nabla \omega = \mathbf{0}$

with vorticity $\omega := \nabla \times u = -(u_1)_{x_2} + (u_2)_{x_1} \in \mathbb{R}$ and

 $\boldsymbol{u} = \nabla^{\perp} \Delta^{-1} \boldsymbol{\omega}$

Here Δ is the Dirichlet Laplacian (no-flow boundary condition).

Growth of solutions to the 2D Euler equations

Solutions of any transport equation

$$\omega_t + \mathbf{u} \cdot \nabla \omega = \mathbf{0}$$

are uniformly bounded, so blow-up might only be possible in the derivatives of ω (loss of regularity).

 Wolibner (1933) and Hölder (1933) showed that solutions remain regular, with the double-exponential bound

$$\|
abla \omega(\cdot,t)\|_{L^{\infty}} \leq C e^{e^{Ct}}$$

- Examples with unbounded (up to super-linear) growth by Yudovich (1974), Nadirashvili (1991), Denissov (2009).
- Kiselev-Šverák (2014) proved existence of solutions on a disc with double-exponential growth (on the boundary).
- Z. (2015) proved existence of at least exponential growth for ω(·, 0) ∈ C^{1,1−}(T²) ∩ C[∞](T² \ {0}) (hence ∂D = ∅). Double-exponential growth on ℝ² and T² is still open.

SQG and modified SQG equations

Double-exponential (i.e., fast) growth for the 2D Euler equations suggests that they could be critical in the sense that finite time blow-up could happen for more singular models. Particularly interesting is the surface quasi-geostrophic (SQG) equation

 $\omega_t + u \cdot \nabla \omega = 0$ $u = -\nabla^{\perp} (-\Delta)^{-1/2} \omega$

It is used in atmospheric science models and was first rigorously studied by Constantin-Majda-Tabak (1994).

2D Euler and SQG are extremal members of the natural family

 $\omega_t + \mathbf{u} \cdot \nabla \omega = \mathbf{0}$ $\mathbf{u} = -\nabla^{\perp} (-\Delta)^{-1+\alpha} \omega$

of modified SQG (m-SQG) equations, with parameter $\alpha \in [0, \frac{1}{2}]$. The regularity/blow-up question remains open for all $\alpha > 0$.

Patch solutions

I will talk about the corresponding patch problem (Bertozzi, Chemin, Constantin, Córdoba, Denissov, Depauw, Gancedo, Rodrigo, Yudovich,...) on the half-plane $D = \mathbb{R} \times \mathbb{R}^+$. Here

$$\omega(\cdot,t)=\sum_{n=1}^{N}\theta_n\chi_{\Omega_n(t)}$$

with $\theta_n \in \mathbb{R} \setminus \{0\}$, and each patch $\Omega_n(t) \subseteq D$ is a bounded open set advected by $u = -\nabla^{\perp}(-\Delta)^{-1+\alpha}\omega$ (see later). For the half-plane *D*, this is (with $\bar{y} = (y_1, -y_2)$ and some $c_{\alpha} > 0$)

$$u(x,t) = -c_{\alpha} \int_{D} \left(\frac{(x-y)^{\perp}}{|x-y|^{2+2\alpha}} - \frac{(x-\bar{y})^{\perp}}{|x-\bar{y}|^{2+2\alpha}} \right) \omega(y,t) dy$$

We require patch-like initial data with some regularity:

• Patches do not touch each other or themselves:

•
$$\overline{\Omega_n(0)} \cap \overline{\Omega_m(0)} = \emptyset$$
 for $n \neq m$

- each $\partial \Omega_n(0)$ is a simple closed curve
- All $\partial \Omega_n(0)$ have certain prescribed regularity.

Blow-up happens if one of these fails at some time t > 0.

Theorem (Kiselev-Ryzhik-Yao-Z., 2015)

Let $\alpha = 0$ and $\gamma \in (0, 1]$. Then for each $C^{1,\gamma}$ patch-like initial data $\omega(\cdot, 0)$, there exists a unique global $C^{1,\gamma}$ patch solution ω .

- The same whole-plane result for a single patch was proved by Chemin (1993). Our proof is motivated by an alternative approach by Bertozzi-Constantin (1993).
- Specifically, each patch boundary is the zero-level set of a function which is advected by u. The rates of change of their $C^{1,\gamma}$ norms, of their gradients on their zero-level sets, and of the distances of their zero-level sets are controlled.
- Previously Depauw (1999) proved local regularity on the half-plane (and global if patches do not touch ∂D initially).
- A result of Dutrifoy (2003) implies global existence in C^{1,s} for some s < γ.

Theorem (Kiselev-Yao-Z., 2015)

Let $\alpha \in (0, \frac{1}{24})$. Then for each H^3 patch-like initial data $\omega(\cdot, 0)$, there exists a unique local H^3 patch solution ω . Moreover, if the maximal time T_{ω} of existence of ω is finite, then at T_{ω} either two patches touch, or a patch boundary touches itself, or a patch boundary loses H^3 regularity (i.e., blow-up).

Local existence on the whole plane was proved for $\alpha \in (0, \frac{1}{2})$ by Gancedo (2008). We can prove uniqueness and the last claim.

Theorem (Kiselev-Ryzhik-Yao-Z., 2015)

Let $\alpha \in (0, \frac{1}{24})$. Then there are H^3 patch-like initial data $\omega(\cdot, 0)$ for which the solution ω blows up in finite time (i.e., $T_{\omega} < \infty$).

Definition of patch solutions

In the Euler case one usually requires that $\Phi_t: \overline{D} \to \overline{D}$ given by

$$\frac{d}{dt}\Phi_t(x) = u(\Phi_t(x), t)$$
 and $\Phi_0(x) = x$

preserves each patch: $\Phi_t(\Omega_n(0)) = \Omega_n(t)$ for each $t \in (0, T)$. However, the map Φ_t need not be uniquely defined for $\alpha > 0$.

Definition

A patch-like (i.e., no touches of patches at any $t \in [0, T)$ plus continuity of each $\partial \Omega_n(t)$ in time w.r.t Hausdorff distance)

$$\omega(\cdot,t)=\sum_{n=1}^{N}\theta_n\chi_{\Omega_n(t)}$$

is a patch solution to m-SQG on [0, T) if for each t, n we have

$$\lim_{h\to 0}\frac{d_H\left(\partial\Omega_n(t+h),X_{u(\cdot,t)}^h[\partial\Omega_n(t)]\right)}{h}=0$$

with d_H Hausdorff distance and $X_u^h[A] = \{x + hu(x) \mid x \in A\}.$

Properties of patch solutions

Denote $\Omega(t) = \bigcup_n \Omega_n(t)$. The definition shows that:

- $\partial \Omega(t)$ is moving with velocity u(x, t) at $x \in \partial \Omega(t)$.
- Patch solutions to m-SQG are also weak solutions

 (and weak solutions with C¹ boundaries which move with some continuous velocity are patch solutions).
- In the Euler case it is equivalent to the definition via Φ.
- It is also essentially equivalent to the definition via Φ in the case of H³ patch solutions to m-SQG with α < ¹/₄ [KYZ].
- In fact, $\Phi_t(x)$ is uniquely defined for $x \in \overline{D} \setminus \partial \Omega(0)$, and

 $\Phi_t: \Omega_n(0) \to \Omega_n(t)$ and $\Phi_t: \left[\overline{D} \setminus \overline{\Omega(0)}\right] \to \left[\overline{D} \setminus \overline{\Omega(t)}\right]$.

Also, these maps are measure preserving bijections and we have $\Phi_t(\partial \Omega_n(0)) = \partial \Omega_n(t)$ in an appropriate sense.

 This uses that the normal component of *u* (w.r.t. ∂Ω(*t*)) is Lipschitz in the normal direction if α < ¹/₄.

Local H^3 regularity: The contour equation

For simplicity assume a single patch. Parametrize $\partial \Omega(t)$ by $z(\cdot, t) \in H^3(\mathbb{T})$. Then for any $x = z(\xi, t) \in \partial \Omega(t)$ we obtain

$$u(x,t) = \frac{c_{\alpha}\theta}{2\alpha} \sum_{i=1}^{2} \int_{\mathbb{T}} \frac{-\partial_{\xi} z^{i}(\xi-\eta,t)}{|z(\xi,t)-z^{i}(\xi-\eta,t)|^{2\alpha}} d\eta$$

with

$$z^{1}(\xi, t) := z(\xi, t)$$
 and $z^{2}(\xi, t) := \bar{z}(\xi, t)$

Next add a multiple of the tangent vector $\partial_{\xi} z(\xi, t)$ so that the integrand becomes more regular, and get the contour equation

$$\partial_t z(\xi, t) = \frac{c_\alpha \theta}{2\alpha} \sum_{i=1}^2 \int_{\mathbb{T}} \frac{\partial_\xi z(\xi, t) - \partial_\xi z^i(\xi - \eta, t)}{|z(\xi, t) - z^i(\xi - \eta, t)|^{2\alpha}} d\eta$$

Gancedo proves local regularity for the contour equation in \mathbb{R}^2 (which has only i = 1, and also a single patch) for any $\alpha < \frac{1}{2}$.

Local H^3 regularity: Existence of a patch solution

We prove local regularity on $D = \mathbb{R} \times \mathbb{R}^+$ for $\alpha < \frac{1}{24}$, via

$$\frac{d}{dt}|||z(\cdot,t)||| \le C(\alpha)\theta|||z(\cdot,t)||^8$$

where $||| \cdot ||| = ||z(\cdot, t)||_{H^3}$ + inverse Lipschitz norm of $z(\cdot, t)$ (+ distance of patches when $N \ge 2$). Quite a bit more involved...

• The method does not seem to work for Hölder norms.

Limitation on α is essentially due to insufficient bounds on the tangential velocity. Where a patch departs x_1 -axis, tangential velocity generated by its reflection might deform it excessively.

• Most of the proof works for
$$\alpha < \frac{1}{4}$$
.

This local contour solution z then yields a patch solution ω .

Local H³ regularity: Independence of parametrization

Proving uniqueness via some version of Gronwall difficult:

$$|u(x) - \tilde{u}(x)| \lesssim d_H(\partial\Omega,\partial ilde\Omega)^{1-2lpha}$$

• Gronwall does apply to $||z - \tilde{z}||_{L^2}$ but z, \tilde{z} might not exist.

First step towards uniqueness is showing independence of the "contour" patch from parametrization of $\partial \Omega(0)$.

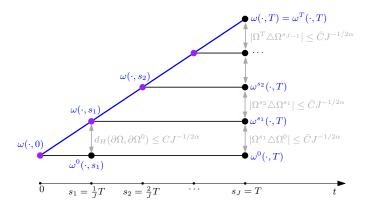
• Regularize:

$$u^{\varepsilon}(x,t) = -c_{\alpha} \int_{D} \left(\frac{(x-y)^{\perp}}{(|x-y|^2 + \varepsilon^2)^{1+\alpha}} - \frac{(x-\bar{y})^{\perp}}{(|x-\bar{y}|^2 + \varepsilon^2)^{1+\alpha}} \right) \omega(y,t) dy$$

- Show uniqueness of patch solution ω_ε (e.g., via Gronwall). Then any contour solutions z_ε, ž_ε which parametrize the same initial patch must yield the same ω_ε.
- Show z_ε → z if they have the same initial parametrization.
 Similarly ž_ε → ž, hence z, ž must yield the same ω.

Local H^3 regularity: Uniqueness of the patch solution

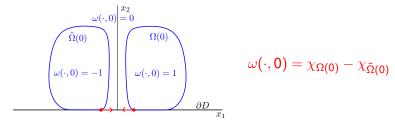
Let ω be any patch solution and ω^s the "contour" patch solution with $\omega^s(\cdot, s) = \omega(\cdot, s)$ (ω^s is unique). For small T > 0 and $J \in \mathbb{N}$:



Successive estimation of the rates of change of $d_H(\partial\Omega, \partial\tilde{\Omega})$ and $||z - \tilde{z}||_{L^2}$ and telescoping give $|\Omega(T) \triangle \Omega^0(T)| \leq J^{1-1/2\alpha}$. Then take $J \to \infty$ and get $\Omega = \Omega^0$ on [0, T].

Finite time blow-up in H^3 : Initial data and symmetry

Our initial data will be made of two patches and odd in x_1 .



Then local uniqueness shows that before blow-up we have

 $\omega(\cdot,t) = \chi_{\Omega(t)} - \chi_{\tilde{\Omega}(t)}$

with $\Omega(t) \subseteq D^+ = (\mathbb{R}^+)^2$ and $\tilde{y} = (-y_1, y_2)$. Then (let $c_{\alpha} = 1$)

$$u(x,t)=-\int_{\Omega(t)}H(x,y)dy$$

$$H(x,y) = \frac{(x-y)^{\perp}}{|x-y|^{2+2\alpha}} - \frac{(x-\bar{y})^{\perp}}{|x-\bar{y}|^{2+2\alpha}} - \frac{(x-\tilde{y})^{\perp}}{|x-\tilde{y}|^{2+2\alpha}} + \frac{(x+y)^{\perp}}{|x+y|^{2+2\alpha}}$$

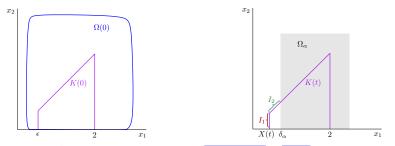
Finite time blow-up in H^3 : A barrier argument

S

Goal: show that if $\Omega(0) \supseteq [\varepsilon, 3] \times [0, 3]$ and $\varepsilon > 0$ is small, then

$$\Omega(t) \supseteq K(t) = \{X(t) < x_1 < 2\} \cap \{0 < x_2 < x_1\}$$

until blow-up, where $X(0) = \varepsilon$ and $X'(t) = -\frac{1}{100\alpha} X(t)^{1-2\alpha}$. This gives blow-up because $X(50\varepsilon^{2\alpha}) = 0$.



If $t < 50\varepsilon^{2\alpha}$ is the first time with $\overline{D^+ \setminus \Omega(t)} \cap \overline{K(t)} \neq \emptyset$, then by

 $\|\boldsymbol{u}\|_{\boldsymbol{L}^{\infty}} \leq C_1 \|\boldsymbol{\omega}(\cdot, \mathbf{0})\|_{\boldsymbol{L}^{\infty}} + C_2 \|\boldsymbol{\omega}(\cdot, \mathbf{0})\|_{\boldsymbol{L}^1} \leq \boldsymbol{C}$

the touch can only be on $I_1 \cup I_2$ (since $\Omega(t) \supseteq \Omega_{\alpha}$ by ε small). Also uses that the patch cannot separate from the x_1 -axis...

Finite time blow-up in H^3 : Estimates on the flow

We have $u_1(x, t) = -\int_{\Omega(t)} H_1(x, y) dy$, where

$$H_1(x,y) = \frac{y_2 - x_2}{|x - y|^{2 + 2\alpha}} - \frac{y_2 - x_2}{|x - \tilde{y}|^{2 + 2\alpha}} + \frac{y_2 + x_2}{|x - \bar{y}|^{2 + 2\alpha}} - \frac{y_2 + x_2}{|x + y|^{2 + 2\alpha}}$$

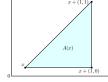
Then $|x - \bar{y}| \le |x + y|$ on $\Omega(t) \subseteq D^+$ gives

$$u_{1}(x,t) \leq -\int_{\Omega(t)} \underbrace{\left(\frac{y_{2}-x_{2}}{|x-y|^{2+2\alpha}}-\frac{y_{2}-x_{2}}{|x-\tilde{y}|^{2+2\alpha}}\right)}_{G(x,y)} dy$$

From $K(t) \subseteq \Omega(t)$ we have for $x \in K(t) \cap \{x_1 \leq 1\}$

$$u_1(x,t) \leq \int_{\mathbb{R}\times(0,x_2)} |G(x,y)| dy - \int_{A(x)} G(x,y) dy$$

because $sgn(G(x, y)) = sgn(y_2 - x_2)$.



Small α is crucial for A(x) to compensate limited control near x. Blow-up may be easier to prove in slightly super-critical models.

Finite time blow-up in H^3 : Conclusion of the proof

A computation and cancellations yield for $x_2 \le x_1 \le \delta_{\alpha}$ (> 0)

$$\begin{split} \int_{\mathbb{R}\times(0,x_2)} |G(x,y)| dy &\leq -\frac{1}{\alpha} \left(\frac{1}{1-2\alpha} - 2^{-\alpha}\right) x_1^{1-2\alpha} \\ &- \int_{A(x)} G(x,y) dy \leq -\frac{1}{\alpha} \left(\frac{1}{6\cdot 20^{\alpha}}\right) x_1^{1-2\alpha} \end{split}$$

and we get for small α and $x \in I_1 \cup I_2$ (using $x_1 \ge X(t)$)

$$u_1(x,t) \leq -\frac{1}{50\alpha} x_1^{1-2\alpha} < -\frac{1}{100\alpha} X(t)^{1-2\alpha} = X'(t)$$

So touch cannot happen on I_1 .

Similarly, for small α and $x \in I_2$

$$u_2(x,t) \geq \frac{1}{50\alpha} x_2^{1-2\alpha} > 0$$

so touch cannot happen on I_2 .

