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Euler equations in 2D

The (incompressible) Euler equations are

ut + (u · ∇)u +∇p = 0
∇ · u = 0

on D × (0,T ) for some domain D ⊆ Rd and time T ≤ ∞, with

u · n = 0

on ∂D × (0,T ) (no-flow boundary condition) and given u(·,0).

In 2D, their vorticity form is the active scalar equation

ωt + u · ∇ω = 0

with vorticity ω := ∇× u = −(u1)x2 + (u2)x1 ∈ R and

u = ∇⊥∆−1ω

Here ∆ is the Dirichlet Laplacian (no-flow boundary condition).



Growth of solutions to the 2D Euler equations

Solutions of any transport equation

ωt + u · ∇ω = 0

are uniformly bounded, so blow-up might only be possible in
the derivatives of ω (loss of regularity).

Wolibner (1933) and Hölder (1933) showed that solutions
remain regular, with the double-exponential bound

‖∇ω(·, t)‖L∞ ≤ CeeCt

Examples with unbounded (up to super-linear) growth by
Yudovich (1974), Nadirashvili (1991), Denissov (2009).
Kiselev-Šverák (2014) proved existence of solutions on a
disc with double-exponential growth (on the boundary).
Z. (2015) proved existence of at least exponential growth
for ω(·,0) ∈ C1,1−(T2) ∩ C∞(T2 \ {0}) (hence ∂D = ∅).
Double-exponential growth on R2 and T2 is still open.



SQG and modified SQG equations

Double-exponential (i.e., fast) growth for the 2D Euler equations
suggests that they could be critical in the sense that finite time
blow-up could happen for more singular models. Particularly
interesting is the surface quasi-geostrophic (SQG) equation

ωt + u · ∇ω = 0

u = −∇⊥(−∆)−1/2ω

It is used in atmospheric science models and was first
rigorously studied by Constantin-Majda-Tabak (1994).

2D Euler and SQG are extremal members of the natural family

ωt + u · ∇ω = 0

u = −∇⊥(−∆)−1+αω

of modified SQG (m-SQG) equations, with parameter α ∈ [0, 1
2 ].

The regularity/blow-up question remains open for all α > 0.



Patch solutions

I will talk about the corresponding patch problem (Bertozzi,
Chemin, Constantin, Córdoba, Denissov, Depauw, Gancedo,
Rodrigo, Yudovich,...) on the half-plane D = R× R+. Here

ω(·, t) =
N∑

n=1

θnχΩn(t)

with θn ∈ R \ {0}, and each patch Ωn(t) ⊆ D is a bounded open
set advected by u = −∇⊥(−∆)−1+αω (see later). For the
half-plane D, this is (with ȳ = (y1,−y2) and some cα > 0)

u(x , t) = −cα
∫

D

(
(x − y)⊥

|x − y |2+2α −
(x − ȳ)⊥

|x − ȳ |2+2α

)
ω(y , t)dy

We require patch-like initial data with some regularity:
Patches do not touch each other or themselves:

Ωn(0) ∩ Ωm(0) = ∅ for n 6= m
each ∂Ωn(0) is a simple closed curve

All ∂Ωn(0) have certain prescribed regularity.
Blow-up happens if one of these fails at some time t > 0.



Global regularity of C1,γ Euler patches on R× R+

Theorem (Kiselev-Ryzhik-Yao-Z., 2015)

Let α = 0 and γ ∈ (0,1]. Then for each C1,γ patch-like initial
data ω(·,0), there exists a unique global C1,γ patch solution ω.

The same whole-plane result for a single patch was proved
by Chemin (1993). Our proof is motivated by an alternative
approach by Bertozzi-Constantin (1993).
Specifically, each patch boundary is the zero-level set of a
function which is advected by u. The rates of change of
their C1,γ norms, of their gradients on their zero-level sets,
and of the distances of their zero-level sets are controlled.
Previously Depauw (1999) proved local regularity on the
half-plane (and global if patches do not touch ∂D initially).
A result of Dutrifoy (2003) implies global existence in C1,s

for some s < γ.



Blow-up of H3 patches on R× R+ for small α > 0

Theorem (Kiselev-Yao-Z., 2015)

Let α ∈ (0, 1
24). Then for each H3 patch-like initial data ω(·,0),

there exists a unique local H3 patch solution ω.
Moreover, if the maximal time Tω of existence of ω is finite, then
at Tω either two patches touch, or a patch boundary touches
itself, or a patch boundary loses H3 regularity (i.e., blow-up).

Local existence on the whole plane was proved for α ∈ (0, 1
2) by

Gancedo (2008). We can prove uniqueness and the last claim.

Theorem (Kiselev-Ryzhik-Yao-Z., 2015)

Let α ∈ (0, 1
24). Then there are H3 patch-like initial data ω(·,0)

for which the solution ω blows up in finite time (i.e., Tω <∞).



Definition of patch solutions
In the Euler case one usually requires that Φt : D̄ → D̄ given by

d
dt

Φt (x) = u(Φt (x), t) and Φ0(x) = x

preserves each patch: Φt (Ωn(0)) = Ωn(t) for each t ∈ (0,T ).
However, the map Φt need not be uniquely defined for α > 0.

Definition
A patch-like (i.e., no touches of patches at any t ∈ [0,T ) plus
continuity of each ∂Ωn(t) in time w.r.t Hausdorff distance)

ω(·, t) =
N∑

n=1

θnχΩn(t)

is a patch solution to m-SQG on [0,T ) if for each t ,n we have

lim
h→0

dH

(
∂Ωn(t + h),X h

u(·,t)[∂Ωn(t)]
)

h
= 0,

with dH Hausdorff distance and X h
u [A] = {x + hu(x) | x ∈ A}.



Properties of patch solutions

Denote Ω(t) =
⋃

n Ωn(t). The definition shows that:

∂Ω(t) is moving with velocity u(x , t) at x ∈ ∂Ω(t).
Patch solutions to m-SQG are also weak solutions
(and weak solutions with C1 boundaries which move with
some continuous velocity are patch solutions).
In the Euler case it is equivalent to the definition via Φ.
It is also essentially equivalent to the definition via Φ in the
case of H3 patch solutions to m-SQG with α < 1

4 [KYZ].

In fact, Φt (x) is uniquely defined for x ∈ D \ ∂Ω(0), and

Φt : Ωn(0)→ Ωn(t) and Φt :
[
D \ Ω(0)

]
→
[
D \ Ω(t)

]
.

Also, these maps are measure preserving bijections and
we have Φt (∂Ωn(0)) = ∂Ωn(t) in an appropriate sense.

This uses that the normal component of u (w.r.t. ∂Ω(t)) is
Lipschitz in the normal direction if α < 1

4 .



Local H3 regularity: The contour equation

For simplicity assume a single patch. Parametrize ∂Ω(t) by
z(·, t) ∈ H3(T). Then for any x = z(ξ, t) ∈ ∂Ω(t) we obtain

u(x , t) =
cαθ
2α

2∑
i=1

∫
T

−∂ξz i(ξ − η, t)
|z(ξ, t)− z i(ξ − η, t)|2αdη

with
z1(ξ, t) := z(ξ, t) and z2(ξ, t) := z̄(ξ, t)

Next add a multiple of the tangent vector ∂ξz(ξ, t) so that the
integrand becomes more regular, and get the contour equation

∂tz(ξ, t) =
cαθ
2α

2∑
i=1

∫
T

∂ξz(ξ, t)− ∂ξz i(ξ − η, t)
|z(ξ, t)− z i(ξ − η, t)|2α dη

Gancedo proves local regularity for the contour equation in R2

(which has only i = 1, and also a single patch) for any α < 1
2 .



Local H3 regularity: Existence of a patch solution

We prove local regularity on D = R× R+ for α < 1
24 , via

d
dt
|||z(·, t)||| ≤ C(α)θ|||z(·, t)|||8

where ||| · ||| = ‖z(·, t)‖H3 + inverse Lipschitz norm of z(·, t)
(+ distance of patches when N ≥ 2). Quite a bit more involved...

The method does not seem to work for Hölder norms.

Limitation on α is essentially due to insufficient bounds on the
tangential velocity. Where a patch departs x1-axis, tangential
velocity generated by its reflection might deform it excessively.

Most of the proof works for α < 1
4 .

This local contour solution z then yields a patch solution ω.



Local H3 regularity: Independence of parametrization

Proving uniqueness via some version of Gronwall difficult:

|u(x)− ũ(x)| . dH(∂Ω, ∂Ω̃)1−2α.

Gronwall does apply to ‖z − z̃‖L2 but z, z̃ might not exist.

First step towards uniqueness is showing independence of the
“contour” patch from parametrization of ∂Ω(0).

Regularize:

uε(x , t) = −cα
∫

D

(
(x − y)⊥

(|x − y |2 + ε2)1+α
− (x − ȳ)⊥

(|x − ȳ |2 + ε2)1+α

)
ω(y , t)dy

Show uniqueness of patch solution ωε (e.g., via Gronwall).
Then any contour solutions zε, z̃ε which parametrize the
same initial patch must yield the same ωε.
Show zε → z if they have the same initial parametrization.
Similarly z̃ε → z̃, hence z, z̃ must yield the same ω.



Local H3 regularity: Uniqueness of the patch solution

Let ω be any patch solution and ωs the “contour” patch solution
with ωs(·, s) = ω(·, s) (ωs is unique). For small T > 0 and J ∈ N:

t0 s1 = 1
J
T

ω(·, 0)

ω(·, s1)

ω0(·, T )

ωs1(·, T )

dH(∂Ω, ∂Ω0) ≤ CJ−1/2α

ω0(·, s1)

|Ωs14Ω0| ≤ C̄J−1/2α

sJ = T

ω(·, T ) = ωT (·, T )

s2 = 2
J
T

. . .

ωs2(·, T )

. . .

ω(·, s2)

|Ωs24Ωs1 | ≤ C̄J−1/2α

|ΩT4ΩsJ−1 | ≤ C̄J−1/2α

Successive estimation of the rates of change of dH(∂Ω, ∂Ω̃)
and ‖z − z̃‖L2 and telescoping give |Ω(T )4Ω0(T )| . J1−1/2α.
Then take J →∞ and get Ω = Ω0 on [0,T ].



Finite time blow-up in H3: Initial data and symmetry
Our initial data will be made of two patches and odd in x1.

∂D
x1

x2

ω(·, 0) = 1ω(·, 0) = −1

ω(·, 0) = 0

Ω(0)Ω̃(0)

ω(·,0) = χΩ(0) − χΩ̃(0)

Then local uniqueness shows that before blow-up we have

ω(·, t) = χΩ(t) − χΩ̃(t)

with Ω(t) ⊆ D+ = (R+)2 and ỹ = (−y1, y2). Then (let cα = 1)

u(x , t) = −
∫

Ω(t)
H(x , y)dy

H(x , y) =
(x − y)⊥

|x − y |2+2α −
(x − ȳ)⊥

|x − ȳ |2+2α −
(x − ỹ)⊥

|x − ỹ |2+2α +
(x + y)⊥

|x + y |2+2α



Finite time blow-up in H3: A barrier argument
Goal: show that if Ω(0) ⊇ [ε,3]× [0,3] and ε > 0 is small, then

Ω(t) ⊇ K (t) = {X (t) < x1 < 2} ∩ {0 < x2 < x1}
until blow-up, where X (0) = ε and X ′(t) = − 1

100α X (t)1−2α.
This gives blow-up because X (50ε2α) = 0.

ε 2

K(0)

Ω(0)

x1

x2

X(t) 2

Ωα

K(t)

I2

δα

I1

x1

x2

If t < 50ε2α is the first time with D+ \ Ω(t) ∩ K (t) 6= ∅, then by

‖u‖L∞ ≤ C1‖ω(·,0)‖L∞ + C2‖ω(·,0)‖L1≤ C

the touch can only be on I1 ∪ I2 (since Ω(t) ⊇ Ωα by ε small).
Also uses that the patch cannot separate from the x1-axis...



Finite time blow-up in H3: Estimates on the flow

We have u1(x , t) = −
∫

Ω(t) H1(x , y)dy , where

H1(x , y) =
y2 − x2

|x − y |2+2α−
y2 − x2

|x − ỹ |2+2α +
y2 + x2

|x − ȳ |2+2α−
y2 + x2

|x + y |2+2α

Then |x − ȳ | ≤ |x + y | on Ω(t) ⊆ D+ gives

u1(x , t) ≤ −
∫

Ω(t)

(
y2 − x2

|x − y |2+2α −
y2 − x2

|x − ỹ |2+2α

)
︸ ︷︷ ︸

G(x ,y)

dy

From K (t) ⊆ Ω(t) we have for x ∈ K (t)∩{ x1 ≤ 1}

u1(x , t) ≤
∫
R×(0,x2)

|G(x , y)|dy −
∫

A(x)
G(x , y)dy

because sgn(G(x , y)) = sgn(y2 − x2). 0

A(x)

x

x+ (1, 1)

x+ (1, 0)

Small α is crucial for A(x) to compensate limited control near x .
Blow-up may be easier to prove in slightly super-critical models.



Finite time blow-up in H3: Conclusion of the proof

A computation and cancellations yield for x2 ≤ x1 ≤ δα (> 0)∫
R×(0,x2)

|G(x , y)|dy ≤ 1
α

(
1

1− 2α
− 2−α

)
x1−2α

1

−
∫

A(x)
G(x , y)dy ≤− 1

α

(
1

6 · 20α

)
x1−2α

1

and we get for small α and x ∈ I1 ∪ I2 (using x1 ≥ X (t))

u1(x , t) ≤ − 1
50α

x1−2α
1 <− 1

100α
X (t)1−2α = X ′(t)

So touch cannot happen on I1.

Similarly, for small α and x ∈ I2

u2(x , t) ≥ 1
50α

x1−2α
2 > 0

so touch cannot happen on I2.
x1

x2

X(t) 2

Ωα

K(t)

I2

δα

I1


